MC14526B

Presettable 4-Bit Down Counters

The MC14526B binary counter is constructed with MOS P-channel and N -channel enhancement mode devices in a monolithic structure.

This device is presettable, cascadable, synchronous down counter with a decoded " 0 " state output for divide-by-N applications. In single stage applications the " 0 " output is applied to the Preset Enable input. The Cascade Feedback input allows cascade divide-by-N operation with no additional gates required. The Inhibit input allows disabling of the pulse counting function. Inhibit may also be used as a negative edge clock.

This complementary MOS counter can be used in frequency synthesizers, phase-locked loops, and other frequency division applications requiring low power dissipation and/or high noise immunity.

Features

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Edge-Clocked Design: Incremented on Positive Transition of Clock or Negative Transition of Inhibit
- Asynchronous Preset Enable
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- $\mathrm{Pb}-$ Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	$\mathrm{V}_{\text {in }}$, $\mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Input or Output Current (DC or Transient) per Pin	$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	± 10	mA
Power Dissipation per Package (Note 1)	P_{D}	500	mW
Operating Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (8-Second Soldering)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

[^0]
ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

FUNCTION TABLE

Inputs					Output	Resulting Function
Clock	Reset	Inhibit	Preset Enable	Cascade Feedback	"0"	
X	H	X	L	L	L	Asynchronous reset*
X	H	X	H	L	H	Asynchronous reset
X	H	X	X	H	H	Asynchronous reset
X	L	X	H	X	L	Asynchronous preset
L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	H	F L	$\begin{aligned} & x \\ & x 乙 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	Decrement inhibited Decrement inhibited
	L	L	1 L	L	L	No change** (inactive edge)
H	L		$\sim^{\text {L }}$	L $\sqrt{-}$	L	No change** (inactive edge)
	L	L		L	L	Decrement**
H	L		L		L	Decrement**

$\mathrm{X}=$ Don't Care
NOTES:

* Output " 0 " is low when reset goes high only it PE and CF are low.
** Output " 0 " is high when reset is low, only if CF is high and count is 0000 .

PIN DESCRIPTIONS

Preset Enable (Pin 3) - If Reset is low, a high level on the Preset Enable input asynchronously loads the counter with the programmed values on $\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2$, and P 3 .

Inhibit (Pin 4) - A high level on the Inhibit input prevents the Clock from decrementing the counter. With Clock (pin 6) held high, Inhibit may be used as a negative edge clock input.

Clock (Pin 6) - The counter decrements by one for each rising edge of Clock. See the Function Table for level requirements on the other inputs.

Reset (Pin 10) - A high level on Reset asynchronously forces Q0, Q1, Q2, and Q3 low and, if Cascade Feedback is high, causes the " 0 " output to go high.
" $\mathbf{0}$ " (Pin 12) — The " 0 " (Zero) output issues a pulse one clock period wide when the counter reaches terminal count $(\mathrm{Q} 0=\mathrm{Q} 1=\mathrm{Q} 2=\mathrm{Q} 3=$ low $)$ if Cascade Feedback is high and Preset Enable is low. When presetting the counter to a value
other than all zeroes, the " 0 " output is valid after the rising edge of Preset Enable (when Cascade Feedback is high). See the Function Table.

Cascade Feedback (Pin 13) — If the Cascade Feedback input is high, a high level is generated at the " 0 " output when the count is all zeroes. If Cascade Feedback is low, the " 0 " output depends on the Preset Enable input level. See the Function Table.

P0, P1, P2, P3 (Pins 5, 11, 14, 2) - These are the preset data inputs. P0 is the LSB.

Q0, Q1, Q2, Q3 (Pins 7, 9, 15, 1) - These are the synchronous counter outputs. Q0 is the LSB.
$\mathbf{V}_{\mathbf{S S}}(\operatorname{Pin} 8)$ - The most negative power supply potential. This pin is usually ground.
$\mathbf{V}_{\mathbf{D D}}(\operatorname{Pin} 16)$ - The most positive power supply potential. V_{DD} may range from 3.0 to 18 V with respect to V_{SS}.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 2)	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ $V_{\text {in }}=0 \text { or } V_{D D}$	V OL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	Vdc
Input Voltage "0" Level ($\mathrm{V}_{\mathrm{O}}=4.5$ or 0.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=9.0\right.$ or 1.0 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=13.5\right.$ or 1.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=0.5\right.$ or 4.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=1.0\right.$ or 9.0 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=1.5\right.$ or 13.5 Vdc$)$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
$\begin{array}{ll} \hline \text { Input Voltage } & \text { "0" Level } \\ \left(V_{O}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \text { "1" Level } \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) & \end{array}$	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	$\mathrm{IOH}^{\text {I }}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{array}{r} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{array}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	- - -	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	$\begin{aligned} & \text { - } \\ & \text { - } \\ & \text { - } \end{aligned}$	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{l}_{\text {OL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$		$\begin{aligned} & 0.51 \\ & 1.3 \\ & 3.4 \end{aligned}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	mAdc
Input Current	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1.7 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.4 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(5.1 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 p F)+\left(C_{L}-50\right) \text { Vfk }
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $p F, V=\left(V_{D D}-V_{S S}\right)$ in volts, f in $k H z$ is input frequency, and $k=0.001$.

SWITCHING CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (Note 5)

Characteristic	Symbol	V ${ }_{\text {D }}$	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Unit
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{T L H}, \mathrm{t}_{T H L}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$t_{\text {TLH }}$, $t_{\text {THL }}$ (Figures 4, 5)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay Time (Inhibit Used as Negative Edge Clock) Clock or Inhibit to Q $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+465 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+197 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+135 \mathrm{~ns}$ Clock or Inhibit to "0" $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+155 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+87 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+65 \mathrm{~ns}$	tpLH, tpHL 2 (Figures $4,5,6$)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \\ & \hline .0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 550 \\ & 225 \\ & 160 \\ & \hline \\ & \hline 240 \\ & 130 \\ & 100 \end{aligned}$	1100 450 320 480 260 200	ns
Propagation Delay Time Pn to Q	$t_{\text {PLH }}$, $t_{\text {PHL }}$ (Figures 4, 7)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 260 \\ & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & 520 \\ & 240 \\ & 200 \end{aligned}$	ns
Propagation Delay Time Reset to Q	tpHL (Figure 8)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 250 \\ 110 \\ 80 \end{gathered}$	$\begin{aligned} & 500 \\ & 220 \\ & 160 \end{aligned}$	ns
Propagation Delay Time Preset Enable to " 0 "	$t_{\text {PHL }}$, $t_{\text {PLH }}$ (Figures 4, 9)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 220 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & \hline 440 \\ & 200 \\ & 160 \end{aligned}$	ns
Clock or Inhibit Pulse Width	t_{w} (Figures 5, 6)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 250 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & 125 \\ & 50 \\ & 40 \end{aligned}$	-	ns
Clock Pulse Frequency (with PE = low)	$f_{\text {max }}$ (Figures 4, 5, 6)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 5.0 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	MHz
Clock or Inhibit Rise and Fall Time	t_{r} t_{f} (Figures 5, 6)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	$\begin{gathered} \hline 15 \\ 5 \\ 4 \end{gathered}$	us
Setup Time Pn to Preset Enable	t_{su} (Figure 2)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 15 \\ & 10 \end{aligned}$		ns
Hold Time Preset Enable to Pn	t_{h} (Figure 3)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} -15 \\ -5 \\ 0 \end{gathered}$	-	ns
Preset Enable Pulse Width	t_{w} (Figure 4)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 250 \\ & 100 \\ & 80 \end{aligned}$	$\begin{aligned} & 125 \\ & 50 \\ & 40 \end{aligned}$	-	ns
Reset Pulse Width	t_{w} (Figure 8)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 350 \\ & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline 175 \\ & 125 \\ & 100 \end{aligned}$	-	ns
Reset Removal Time	$\mathrm{t}_{\text {rem }}$ (Figure 8)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	10 20 30	$\begin{aligned} & -110 \\ & -30 \\ & -20 \end{aligned}$	-	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Typical Output Source Characteristics Test Circuit

Figure 3. Power Dissipation

Figure 2. Typical Output Sink Characteristics Test Circuit

*Includes all probe and jig capacitance.
Figure 4. Test Circuit

SWITCHING WAVEFORMS

Figure 5.

Figure 7.

Figure 9.

Figure 6.

Figure 8.

Figure 10.

APPLICATIONS INFORMATION

Divide-By-N, Single Stage

Figure 11 shows a single stage divide-by-N application.
To initialize counting a number, N is set on the parallel inputs ($\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2$, and P 3) and reset is taken high asynchronously. A zero is forced into the master and slave of each bit and, at the same time, the " 0 " output goes high. Because Preset Enable is tied to the " 0 " output, preset is enabled. Reset must be released while the Clock is high so the slaves of each bit may receive N before the Clock goes low. When the Clock goes low and Reset is low, the " 0 " output goes low (if P0 through P3 are unequal to zero).

The counter downcounts with each rising edge of the Clock. When the counter reaches the zero state, an output pulse occurs on " 0 " which presets N . The propagation delays from the Clock's rising and falling edges to the " 0 " output's rising and falling edges are about equal, making the " 0 " output pulse approximately equal to that of the Clock pulse.

The Inhibit pin may be used to stop pulse counting. When this pin is taken high, decrementing is inhibited.

Cascaded, Presettable Divide-By-N

Figure 12 shows a three stage cascade application. Taking Reset high loads N. Only the first stage's Reset pin (least significant counter) must be taken high to cause the preset for all stages, but all pins could be tied together, as shown.

When the first stage's Reset pin goes high, the " 0 " output is latched in a high state. Reset must be released while Clock is high and time allowed for Preset Enable to load N into all stages before Clock goes low.

When Preset Enable is high and Clock is low, time must be allowed for the zero digits to propagate a Cascade Feedback to the first non-zero stage. Worst case is from the most significant bit (M.S.B.) to the L.S.B., when the L.S.B. is equal to one (i.e. $\mathrm{N}=1$).

After N is loaded, each stage counts down to zero with each rising edge of Clock. When any stage reaches zero and the leading stages (more significant bits) are zero, the " 0 " output goes high and feeds back to the preceding stage. When all stages are zero, the Preset Enable automatically loads N while the Clock is high and the cycle is renewed.

Figure 11. \div N Counter

Figure 12. 3 Stages Cascaded

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14526BCP	PDIP-16	25 Units / Rail
MC14526BCPG	$\begin{aligned} & \hline \text { PDIP-16 } \\ & \text { (Pb-Free) } \end{aligned}$	
MC14526BDW	SOIC-16	47 Units / Rail
MC14526BDWG	$\begin{gathered} \text { SOIC-16 } \\ \text { (Pb-Free) } \end{gathered}$	
MC14526BDWR2	SOIC-16	1000 / Tape \& Reel
MC14526BDWR2G	$\begin{aligned} & \text { SOIC-16 } \\ & \text { (Pb-Free) } \end{aligned}$	
MC14526BF	SOEIAJ-16	50 Units / Rail
MC14526BFG	$\begin{aligned} & \hline \text { SOEIAJ-16 } \\ & \text { (Pb-Free) } \end{aligned}$	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

PDIP-16
CASE 648-08
ISSUE T

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS

WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.740	0.770	18.80	19.55		
B	0.250	0.270	6.35	6.85		
C	0.145	0.175	3.69	4.44		
D	0.015	0.021	0.39	0.53		
F	0.040	0.70	1.02	1.77		
G	0.100 BSC		2.54 BSC			
H	0.050		BSC	1.27		BSC
J	0.008	0.015	0.21	0.38		
K	0.110	0.130	2.80	3.30		
L	0.295	0.305	7.50	7.74		
M	0°	10°	$0{ }^{\circ}$	10°		
S	0.020	0.040	0.51	1.01		

SOIC-16WB
CASE 751G-03
ISSUE C

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS	
DIM	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	10.15	10.45
E	7.40	7.60
e	1.27	BSC
\mathbf{H}	10.05	10.55
h	0.25	0.75
L	0.50	0.90
\mathbf{q}	$0{ }^{\circ}$	$7 \circ$

PACKAGE DIMENSIONS

SOEIAJ-16
CASE 966-01
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE

MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
4. TEFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	-	0.78	---	0.031

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and (O1) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: *For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

